3.399 \(\int \frac{\sqrt{x}}{(b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=145 \[ -\frac{5 c^{3/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{6 b^{9/4} \sqrt{b x^2+c x^4}}-\frac{5 \sqrt{b x^2+c x^4}}{3 b^2 x^{5/2}}+\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}} \]

[Out]

1/(b*Sqrt[x]*Sqrt[b*x^2 + c*x^4]) - (5*Sqrt[b*x^2 + c*x^4])/(3*b^2*x^(5/2)) - (5*c^(3/4)*x*(Sqrt[b] + Sqrt[c]*
x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(6*b^(9/4)*S
qrt[b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.184625, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {2023, 2025, 2032, 329, 220} \[ -\frac{5 c^{3/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{6 b^{9/4} \sqrt{b x^2+c x^4}}-\frac{5 \sqrt{b x^2+c x^4}}{3 b^2 x^{5/2}}+\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/(b*x^2 + c*x^4)^(3/2),x]

[Out]

1/(b*Sqrt[x]*Sqrt[b*x^2 + c*x^4]) - (5*Sqrt[b*x^2 + c*x^4])/(3*b^2*x^(5/2)) - (5*c^(3/4)*x*(Sqrt[b] + Sqrt[c]*
x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(6*b^(9/4)*S
qrt[b*x^2 + c*x^4])

Rule 2023

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] + Dist[(c^j*(m + n*p + n - j + 1))/(a*(n - j)*(p + 1)),
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] &
& (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\sqrt{x}}{\left (b x^2+c x^4\right )^{3/2}} \, dx &=\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}}+\frac{5 \int \frac{1}{x^{3/2} \sqrt{b x^2+c x^4}} \, dx}{2 b}\\ &=\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}}-\frac{5 \sqrt{b x^2+c x^4}}{3 b^2 x^{5/2}}-\frac{(5 c) \int \frac{\sqrt{x}}{\sqrt{b x^2+c x^4}} \, dx}{6 b^2}\\ &=\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}}-\frac{5 \sqrt{b x^2+c x^4}}{3 b^2 x^{5/2}}-\frac{\left (5 c x \sqrt{b+c x^2}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x^2}} \, dx}{6 b^2 \sqrt{b x^2+c x^4}}\\ &=\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}}-\frac{5 \sqrt{b x^2+c x^4}}{3 b^2 x^{5/2}}-\frac{\left (5 c x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{3 b^2 \sqrt{b x^2+c x^4}}\\ &=\frac{1}{b \sqrt{x} \sqrt{b x^2+c x^4}}-\frac{5 \sqrt{b x^2+c x^4}}{3 b^2 x^{5/2}}-\frac{5 c^{3/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{6 b^{9/4} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0194315, size = 60, normalized size = 0.41 \[ -\frac{2 \sqrt{\frac{c x^2}{b}+1} \, _2F_1\left (-\frac{3}{4},\frac{3}{2};\frac{1}{4};-\frac{c x^2}{b}\right )}{3 b \sqrt{x} \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(-2*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[-3/4, 3/2, 1/4, -((c*x^2)/b)])/(3*b*Sqrt[x]*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.217, size = 127, normalized size = 0.9 \begin{align*} -{\frac{c{x}^{2}+b}{6\,{b}^{2}}{x}^{{\frac{3}{2}}} \left ( 5\,\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ) \sqrt{-bc}x+10\,c{x}^{2}+4\,b \right ) \left ( c{x}^{4}+b{x}^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(c*x^4+b*x^2)^(3/2),x)

[Out]

-1/6/(c*x^4+b*x^2)^(3/2)*x^(3/2)*(c*x^2+b)*(5*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1
/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/
2))*(-b*c)^(1/2)*x+10*c*x^2+4*b)/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2}} \sqrt{x}}{c^{2} x^{8} + 2 \, b c x^{6} + b^{2} x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*sqrt(x)/(c^2*x^8 + 2*b*c*x^6 + b^2*x^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(c*x**4+b*x**2)**(3/2),x)

[Out]

Integral(sqrt(x)/(x**2*(b + c*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(x)/(c*x^4 + b*x^2)^(3/2), x)